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Abstract

In the Letter, we have constructed and investigated some properties of the Gazeau—Klauder quasi-coherent states for the
Morse potential, previously deduced by Roy and Roy. We have focused our attention on the thermal states and we have found
the analytical form for the diagon&-representation of the density operator.
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1. Introduction

The Morse potential is one of the most simple and “realistic” three-parameter anharmonic potential model,
which has proven to be very useful for solving various problems from diverse fields of physics (e.g.,
spectroscopy, diatomic and polyatomic molecule vibration and scattering). The one-dimensional non-rotational
Morse Hamiltonian has the form [1]:

h2 d2
" 2m, dr?

wherer represents the internuclear distangeis the equilibrium internuclear separation of the system of two
nuclei in the diatomic moleculey, is the reduced masa, is the Morse constant of anharmonicity, abds the
dissociation energy of the diatomic molecule (i.e., the depth of the potential energy well).

Based on the recent work of Gazeau and Klauder [2], who have determined a set of criteria which a new
coherent statg/, y) (later called “Gazeau—Klauder coherent state”) should satisfy, last year, Roy and Roy [3] have
constructed and examined the coherent states for the Morse potential, using the formalism of Gazeau and Klauder.

In the present Letter we shall verify explicitly the conditions from the paper [2] for the case of Morse potential
and examine other interesting properties of these states.

Hy(r)= + D[l — eia(rir"')]z (D)
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2. Thebasic properties—revisited

In order to associate the usual coherent states with the Hamiltonian problems, Gazeau and Klauder have made
some important modifications in the definition of coherent states [2,4]: the parametrization of the) staterms
of a single complex numberis extended by replacingby two independent real numbefsandy, so that/ > 0
and—oo < y < oo, namelyz = /J exp(—iy). In this way, the new obtained state i y ).
Let us review the concrete construction of the stéfeyg) for the Morse oscillator potential, following the path
of Roy and Roy [3] and correcting amission in their paper.
The eigenequation and the eigenvaléigdor the Morse HamiltoniarH,, are

Hy|[N], n) = En|[N], n), (2)
D 1 D 1\2 1\ fho 1\2 1 ho
where we have used the following notations and also the angular frequencyhe Morse oscillator
2m, D hw 1 2D
K=2 Eo=—|(1-— =a,/—. 4
ah 0= ( ZK)’ w=a my @)
The eigenequation (2) can be rewritten in the following dimensionless manner:
H|[N],n) =eu|[N],n), (5)
wheren =0,1,...,[N/2] ([x] represent the integer part of the real numbeand
Hy — E 1
HthTO, enzfn(K—l—n)zN_i_ln(N—n). (6)

To make the writing simpler, as in the last equality, in the remaining part of the Letter, instead of the Child’s
paramete [5], we also prefer to use the dimensionless paraniéter

N=K -1, (7

and thus, the maximal number of the bound states for the Morse oscillatggis= [N/2].
With these considerations (we make the specification that some of our notations are different from those of Roy
and Roy [3]), the stateld, ) become:

(N2 4o —iye,
I, ) =N() ————I[N],n). (8)
HX:;, Vo)
The quantityp (n) is defined as a unique function @f’s, namely,

F(n+1)
(N +1"T(N —n)’

n
pm)=[Tea=rN) p(O)=1. ©)
k=1

According to [2,3] the Gazeau—Klauder coherent state (GK-CS) (8) must be: (a) normalizable; (b) continuous
in two labelsJ andy and must satisfy: (c) the resolution of unity, with a necessarily positive associated measure;
(d) the temporal stability condition and (e) the action identity.

Then, the matrix elements of an operatowhich characterize the Morse oscillator, inJa y )-representation,
are

[N/2] 5% )
I YA y) =NUINJ == 0emved ([N], v|A|[N], n). 10
(YA y) = NUONW) Y st ([N1, v|A|[N], n) (10)

v,n=0
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By particularizing the operatot and the labeld andy, we get to a series of interesting properties. Sd, i 7
(unity operator), due to the orthonormality of the eigenveciia¥g, n), we obtain the overlap
[N/2]

JJ)?
Ty = NN 3 D2
n=0

ei(y/—y)en, (11)
p(n)

which becomes simpler if’ = y.
If A=1,y’ =y andJ’ = J, we obtain the normalization to unity

[N/2]
oyl y)=INDP Y
n=0

n

= 1, 12
p(n) 12)

from which thenormalization constant is

[N(J)]—2=[NZ/2] L _FU), N =———. (13)
= o) VFD)

We note that the series (13) determining the normalization constant is a finite series and thus it exists for alll
values ofJ [6]. Consequently, the statés, y) for the Morse potential (8) are normalizable and the normalization
constant (13) is a continuous function in laljel

The continuity in two labelsJ andy follows from the continuity of the overlafy’, y'|J, y) because

2
N7 v)y =1y =2(1—-Re{J", ¥/, ¥)) = 0, (14)
when(J', y") — (J, y).
If the operatorA is diagonal in the[N], n)-basis, i.e.,
(N1, nlA|[N], n) = andun (15)
it follows that the diagonal elements in thg y )-representation are

1 [N/2] Jn
J,vIA|J, =(A)) = —— —ay,. 16
(VA y) = (A)y f(J),;p(n)“ (16)

As an example, ifA = ©*, wherev is the number operatdi[N], n) =n|[N],n) ands =1, 2, ... it results

| o1 dY
=70 & pw" T FD (de) T 0

[N/2]

The expectations of the two first powersioére

d
(ﬁ),:]EIH}'(J), (18)

dJ
These expectations are useful in order to calculate the variance of the number operator

02, =1L nFu) + (Ji In]-"(J))Z + 12<i)zlnf(1> (19)
1=a dJ '

(05)s =(%), — (D) )2— Jiln]-"(J) 2+J2 4 2In]~'(]) (20)
VI= E\Tar dJ ’
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as well as the second-order correlation function [7,8] for the Morse oscillator

o (93— (D)s G52 F W)
— — _ 21
&)= "2 G F())? )
Moreover, the MandeD-parameter [9,10] is
(03) 12 PN FW)
= -1= —1l|=v&£— "~ 22
Cr="%), Olls7), =] T InFJ) (2)

The last two quantities provide information about the inherent statistical properties of the| $tatpsThese
properties depend on the analytical expressions of the functions (21) and (22) as depending on theJvariable
Because of the structure of these functia®s); andQ are difficult to be evaluated analytically, so they must be
calculated numerically. Generally speaking, the stafeg) exhibit sub-Poissonian statistics for those value$ of
for which Q; < 0, Poisson statistics for values for whi¢h; = 0 and supra-Poissonian statistics for valued of
for whichQ; > 0.

The resolution of the unity in terms of a certain set of states is a very important property because it allows
the practical use of these states as a basis in the Hilbert space [7H kgl be a finite-dimensional subspace
of the Hilbert spacé, which is spanned by the complete orthonormal seff2] + 1 states|[N],n) (n =
0,1,2,...,[N/2). Then,f[N/g] is the projection operator on the subspatg 2 [11] and the resolution of the
unity in terms of the statgd, y) can be performed in the following manner:

[N/2]

/dMN(J,V)IJ,VW,yI =lvz= Y, |IN],n)([N1,nl. (23)
n=0

The stategJ, y) exist only if the radius of convergendeis non-zero [4], and this fact is easy to demonstrate
for the case of Morse oscillator:
R= lim [p(n)]7 — oo, (24)
n—oo
by using the Stirling’s formula foF (n + 1) and the following limit [13]:
C(N +k
N+ _ 1 (25)
N—oo T'(N)Nk

valid for anyk and N .
If we assume the integration measuyey (J, ) so that [4]

1 T o0
/(...)d,uN(J,y)z ;/dy/(...)k(])dJ (26)
- 0
we obtain
[N/2] %
N], N],
/duN(J,V)IJ,yHJ,yI =y '”Zi# JIN(DPk(J)dJ = 1. (27)
n=0
After the function change
k(J)= ;h(J), (28)

V(D12



D. Popov / Physics Letters A 316 (2003) 369-381 373

the above integral leads to the following Stieltjes moment problem:

o o T(n+1)
/J h(I)d] = p) =TN) G om (29)
0

i.e., the positive constants(n) arise as moments of a probability distributib(/).
Following the standard method [4] and using the definition of Meijér$unction and the Mellin inversion
theorem, from which it follows that [12,13]

T s—1 oo ai, ..., dp, Apyls ..., dp 1 r;’:l[‘(bj+s)l_[r;zlf’(l—aj—s)
dxx Gp g | ax =—— . > ’
) b1, ..., b, buy1, ..., by o ]‘[jzmﬂl"(l—bj—s)]"[j=n+1l"(a,-+s) (30)
we can express the functidr/) in terms of the Meijer'sG-function
h(J)= (N +DI(N)G§ ( —N)=(N+1)"2 +1F(N)J_%JN(2\/(N+1)J), (31)

whereJy (...) is the Bessel function of the first kind.
In essence, this result is the same as that obtained by Roy and Roy for the probability distribution (see, Eq. (11)
of Ref. [3]), taking into account that our notations are rather differ: 1 = N, so thatupmax= M +1=[N/2].
On the other hand, the factdr + 1 (which is very important in calculations concerning the harmonic limit, as we
will see in the last section) iamitted in the Ref. [3].
Finally, the correct integration measure becomes

dun(J,y) = (N + 1) 20N dy dJ F() I~ Iy (2 (N +D)J). (32)

In order to verify thetemporal stability condition of the state$J, y), we apply the operator expiwr H) and,
using the eigenvalue equation (5), we immediately obtain

[N/2] 5 —l(y+wt)en

exp(—iwtH)|J, y) ./\/'(J)Z e I[N1,n) =|J, y + wt). (33)

The temporal stability means that, under the chosen dynamics, the temporal evolution of th¥e gigbeoceeds
to |J, y + wt), for an arbitrary fixed positive parameter
Theaction identity, written for the dimensionless Hamiltonigh can be obtained from the Eq. (16), i.e.,

[N/2]
1 J" N . 1o
(yIH Y =70 Z S =N -1 (34)

and, after the straightforward calculations, becomes

(J,ylH|J,y)= N—_lfi InF(J)— L[(J— In]—'(])) + 12<i)2|nf(1)] = f(J) (35)
VY= N T g N+1 dJ =

We see that this is a certain function of the lalbeind this fact characterizes all the coherent states corresponding
to systems with a finite-dimensional energy spectrum, as it was mentioned earlier [3].

Therefore, the statels/, y), constructed for the Morse potential, satisfy all criteria (a)—(e) for the coherent
states, as it was underlined in [3]. However, a problem comes out in connection to the weight fuagjionthe
integration measuréuy (J, ) (26).

According to the general requirements for the coherent states [2,4], the weight functiomust be a positive
function. Thanks to the Bessel functioi (2+/(N + 1)J), the results expressed in (32) have both positive and
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negative components. This kind of measure does not lead to coherent states which require a positive (or at least
non-negative) measure for the projection operators. For this reason we consider that the above constructed state:
|J,y) are not “pure” or “classical” Gazeau—Klauder coherent states, as it was pointed out in [3] and, maybe, it is
better to call these states tlazeau—Klauder quasi-coherent states for the Morse potential. Consequently, in the
remaining part of this Letter we will call the states y) (8) the Gazeau—Klauder quasi-coherent states (GK-qCSs).

Although these quasi-coherent states do not have a positive weight function, they have a series of interesting
properties (some of them were presented in Ref. [3]) which, as we will see, all lead to the corresponding properties
of the harmonic oscillator at the harmonic limit.

In the next section, we shall examine other interesting properties of the Gazeau—Klauder quasi-coherent states
for the Morse potential, especially those connected with the mixed quantum states, i.e., the thermal states.

3. Thermal statesfor the M or se potential

Now, we will carry out a detailed discussion on the statistical properties of the previously deduced quasi-
coherent states for the Morse oscillatdt ). We consider a quantum system which consists of a gas of one-
dimensional non-rotational Morse oscillators in thermodynamic equilibrium with the thermostat at temperature
T = (kgp)~* (wherekp is Boltzmann’s constant angithe corresponding temperature constant), which obeys the
guantum canonical distribution. The corresponding normalized density operator is then

1 [N/2]
pv == 3 € PEIINL ) (N, >
n=0

whereZy is the normalization constant, i.e., the partition function for a fixed paraméterhich characterizes
the maximum number of bound vibrational states for a certain diatomic molecule.
Their matrix elements in thgJ, y)}-representation are

1 1 & 1 o
J/, / J, - —BEn JJ 5 ,—i(y—y en 37
Vel v = TE I ED 2 e (37)

Using the integral [13]

o0
1/2\*T 1 4+ L4 L 1

/x“Ju(ax)dxz—(—> M, —Rev—-1<Reu< , (38)
a\a) TG+3-5) 2

from the normalization condition

Trpn =/duN(J, L yvlenld,y) =1, (39)
we recover the correct expression of the vibrational partition function
[N/2]
ZN = Z e PEn, (40)
n=0

This suggests that the resolution of unity (23) with the integration measure (32), as well as the expression of the
density matrix elements (37) are correct.

Because the GK-qCS4, y) form an overcomplete set of states, they may be used as a basis set despite the fact
that they are non-orthogonal.
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In order to find the quasi-probability distribution functidty (z) from the diagonal expansion of the density
operatorpy in the GK-qCSs,
1

N

we observe that the equation

1
<f|pN|g>=Z—N/duzv(f,V)(fIJ,V)PN(J)(J,VIg) (42)

must be fulfilled for any arbitrary vectors| and|g) from the Hilbert space (or, for any vectors from the basis
|J,y) or|[N],n)). What is more, from the trace-condition (39) and the scalar product or overlap (11), it follows
that theP-function satisfies the normalization condition

/ dun(J,y) Py(J)=1. (43)
The left-hand side of Eq. (42) is
1 [N/2]
LHS= o= > e "5 (fIN]. n)([N 1. nlg), (44)
n=0

while, after the angular integration

e

1 .
o f dy eVen—edy — 5 (45)
-7

the right-hand side becomes

(V/2] %®

N N

RHS= (v + 1~ 2wy 3 0 ]’nz([) Lalg) fJ"—%JN(z\/M)PN(J)dJ. (46)

pn
n=0 0
Comparing LHS and RHS we obtain that the integral must be

r 1 r 1

/J”*%JN(Z\/(N +1)J)Pn(J)dJ = ——e FEn (r;+ ) , (47)
ZN (N+1)ﬂ*§+lr(N_n)

0

where Py (J) is an unknown function. In order to determine it, we adopt the following strategy.

The energy eigenvalues of the Morse oscillator (see, Eq. (3)) depend on the square of the vibrational quantum
numbem and, as a result, the energy exponentiakexpE ) is not suitable to be written as a product of a constant
quantity and a naturad-power of an exponential (as well as in the case of the harmonic oscillator) and to be used
in solving the integral (47) in the standard manner, i.e., as the Stielties moment problem [12,13]. So, to avoid this
inconvenience, it is necessary to elaborate a special method as indicated below.

First of all, we can write the energy exponential as follows:

BE, = BEo+ An — Bn?, (48)
where the used notations are:

1 1 hw hw
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For most of the diatomic moleculds « A. So, the limits of the paramet& = N + 1 (see, Eq. (7)) are
very large, e.g.K = 37.1586 for Hb molecule, i.e., for a “light” molecule an& = 34878 for I, a “heavy”
molecule [14]. As a consequence, the quanfftycan be regarded as a perturbation constant and the energy
exponential can be expanded in the power series as follows:

e BEn — e_ﬁEoe_‘A”ean = ¢ PEo,—An Z —_n?, (50)
k!
k=0
By writing
d 2k
E_‘An}’le — (a> e—.An (51)

we finally have

g pEon B (A N
eﬁnzeﬁozﬁ(a> [e=A]". (52)

It is obvious that theP-function also depends on the quantiti¢sand B3, besides the variablé. This leads to
the idea thay (J) = Py (J, A, B) can also be expanded in a power series similarly to the energy exponential (52)
in the following manner:

pey = Loty BTN ) a g
W)= e ;)F 1) PvUA )B=O

1 X Bk d\*
Ez_eﬂEo(N-’-l)ngF(ﬁ) Xn(J, A, (53)
i k=0

where the functiorX y (J, A) is to be determined.
By inserting Egs. (52) and (53) into Eq. (47), we obtain:

o0

Y B 1 T(n+1)
O/J 2IN(2V(N +DJ)XN(J, AdJ = AN IO TN =) (54)

With the help of a new function
1
INCV(N+DJT)

and extending the natural valuesmoto complexs such that: — % =s — 1, we get to the following Stieltjes
moment problem:

Xnv(J,A) = hn(J, A) (55)

1 1 T'(3+s)

: 56
[eAN + 112 LeAN+DP TE +1-+) (56)

/Jf—th(J, A dJ =
0

The solution of such a problem is [12]

hy(J, A = N
v [eAN + 11772

A 1 §-1
[e*(N + 1))z (57)
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Finally, the P-function is

1 . B*(d \* N IN@RYeAN + 1))
_ _— ,—BEo 2 (< A\1-7 N
Pn=75e ; k! (dA) [(e NN }

(58)

We can also use the following operator identity:
00 2k 2
B/ d d
> (i) =oo5(i%) | (59)
k=0
and so, theP-function becomes

1 d \? N IN@RYeANN +1
PN(J)Z_e—ﬂEoeXp[B<_) ][(E'A)l > JN( e ( + )J)j| (60)
ZN dA INCV(N+1)J)
In order to verify the correctness of the above obtained expression, we shall mention an important property of
the P-distribution function, i.e.,

/dMN(J, yY)Pn(J) =1 (61)

By using the integral (38) and Eq. (52), after the straightforward calculations, the property (61) can be easily
verified.

As it is shown in [8,9], theP-function is analogous to a probability distribution for the valued oHowever,
it is a quasi-probability distribution function becauBg(J) can take negative values or become highly singular,
especially when the density operator corresponds to a classical state with sub-Poissonian statistics. In addition
to this, the diagonal representation of the density operator (oPthepresentation) is convenient for evaluating
expectations of the different operators concerning the Morse oscillator system.

The thermal expectation value for the observabis

(A)ny =Tr(pn A) =/dMN(J7 ¥) Pn () vIAl, y) = (A)gy. (62)

If the operatorA is diagonal in the J, y)-basis, e.g., if it is an integer powernf the number operatdr, then,
using Egs. (17), (38) and (47), we obtain successively:

[N/2] e [N/2]
1 1
()y =+ D 2T Y nS/J”’%JN(Z\/(N+1)J)PN(J)dJ=— S e P (63)
= p(n) " Zn =

In order to evaluate the last sum for different values ofve rewrite the energy exponential (see, Eq. (3)) as
follows:

e PEn — g Bt )+BFE 432 _ —ati+H)+Bn+3)? (64)
wherea = Shiw and, consequently,

1 [N/2]
- nsefa(n+%)+8(n+%)2. (65)

<i}s)N ZN

n=0
Because the quantit§ is small, it can be considered as a perturbation constant to a harmonic behaviour and it
is advantageous to writ€' as a linear combination of the powers(af+ %)1:

=3 B0 ()
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Therefore, it is possible to express the thermal expectatidng through the derivatives of the Kiy:

=250 (2

In this manner the thermal expectations for the first two powers are

a 1
Dyn=——INZy — = 68
Oy =—2-INZy -5, (68)
d 1\? [ 9)\?
A2

With these expectations we can define and calculate the thermal second-order correlation gﬁﬂcaiod the
thermal Mandel parameté? v, i.e., the thermal analogue of the corresponding functions for the GK{dC8
(see, Egs. (21) and (22)):

2 () — (D)n 1 (2)2Inzy
RGN ; 70
&)y (0)n)? LinZv+3  (LEInZy+3)? (70)
b 2y2Inz
QN:M_ = (0)w[(s?), — 1] =—1- (35) N a1

(0)n LinzZy+3

In a similar way, it is possible to express, as functions of th&un all thermodynamical and statistical
characteristics of a quantum gas of non-rotational Morse oscillators which is in thermodynamical equilibrium
with a thermostat (e.g., free energy, internal energy, entropy, heat capacity at the constant volume and so on).

4. Theharmonic limit of the obtained results

In the last section let us examine the exact formulation of the harmonic limit of the Morse oscillator. We have
proven that this requires the simultaneous (or correlated) prosecution of the following limiting operations [14]:

D — oo,
K — o0,
a— 0,

lim =40 _ g, (72)

2 2
Da2 =75,
__nnmw
Ko = ZT
At the harmonic limit, all obtained formulae and equations for the one-dimensional Morse oscillator must lead

to the corresponding one for the one-dimensional harmonic oscillator.
We begin with the dimensionless Morse eigenvalues (6)

lim ¢, = lim
N—oo N—ooo N +1

so that the quantity (n) (9) has the limit

n(N —n) =n, (73)

I'(N)
(N +D"I'(N —n)

N"Lnoo p(n) = Nﬁnoo F(n+1) =n!= pHo(n). (74)
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Here we have used Eq. (25) and, because of the facMligt great number, we can pNt~ N + 1. Similarly,

) [N/2] Jn (o T,
. -2 _ . _ s e J
Aim VO = lim 7(J) = 2:;) imy = ¢ (75)

—o0p(n) ) n!

With these limits we can easily show that, at the harmonic limit, the GK-qCS for the Morse potential (8) passes
to the GK-CS for the one-dimensional harmonic oscillator (HO), which is identical to the usual (Glauber) coherent
states (CS) if we consider= /J exp(—iy):

J 2 g_lyen

Jim (7. y)=e ZZ In) = |z), (76)

where|[N], n) = |n).
At the harmonic limit (72), the integration measure (32) becomes

im dun(J,y)=dydJ lim F lim [(N+1D 2@ )= 2] lim Jy(2J/ N+ 1)7). (77)
N—o00 N—oo N—oo N—>oo
We calculate the last limit by using the Bessel function power series [13]
[e¢]
DAVBIN DT 1*
2/ nI)=[y nI Y 7
IN(2VB(N +1)7) = [Vb(N +1)J ] ;) P (78)

so that, due t&"(N + 1) = NI'(N), we have

: , N 1 . (b 1
Jim Iy (2Vb(N +D)J) = lim [Vb(N +DJ]7 lim — lim > o T

N—oo N N—>ook:o ! 7(N+1)"I‘(N+1)
1
= lim Z[Vbv+17]". (79)
N—>oo N

Taking b = 1, the product of the two last limits from Eq. (77) is €x/), and so, using Eq. (75), we finally
obtain

Jim dun(J,y) =dydJ =2dylz|d]z] =d?z, (80)
— 00

i.e., the integration measure for the CS-HO.
The limit of the action identity (35) is

N-1
im Wy HIL ) = lim Y2 g =22, 81
Jim (L HILy) = lim ] (81)
i.e., the same as for the HO.

In our opinion, one of the main results of our Letter is the expression ofPttakistribution function (58).
Therefore, it is compulsory to examine their harmonic limit:

1 _ d \? . _N JN(2V/ eA(N +1J)
m m BEo m m A\1-% IN
II Pn(J)= “ ooZNe NlL ooexp|: (d A) i|1\/|%I oo|:(e ) INCRV(N+1)J) i| (82)

The first limit from the right-hand side, taking into account the limit of the quantity49), leads to the
expression } exp(—Bhw), the second limit is equal to unity, while for the third we use Eq. (79) and we obtain
exp(Bhw) exp—J (eP"® — 1)]. Allin all, the result is theP-distribution function for the harmonic oscillator:

Jim Py (1) = (P — 2)e M = P, (83)
—00
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If N — oo, thenAd — Bhw andB — 0 and this fact provides that the, (Morse oscillator}~ E, (harmonic
oscillator) andZy (Morse oscillator}— Z (harmonic oscillator). As a result, all the thermal expectations (67) for
the Morse oscillator lead to the corresponding thermal expectations for the harmonic oscillator.

The same situation is, of course, available for all thermodynamical and statistical characteristics of a quantum
canonical gas of non-rotational Morse oscillators. The fact that, at the harmonic limit, all these expectation values
lead to the corresponding results for the one-dimensional harmonic oscillator, suggests that our obtained Gazeau-
Klauder quasi-coherent states for the Morse potential are correct, as well as our obtained formulae for the diagonal
representation of the density operator (41), respectively, foPtfienction (58).

5. Concluding remarks

The |J, y) states for the Morse potential were constructed by Roy and Roy [3], using the standard method
proposed in the original paper of Gazeau and Klauder [2]. In Ref. [3] some properties of these states were also
examined, by underlining the conditions which these states must satisfy.

In the present Letter we have examined some properties d¢f/the states for the Morse potential, following
the basic ideas from the two papers above [2,3].

Despite the fact that the calculations are correct in essence, in Ref. [3], the kctoe (N + 1)1 in the
expression o, is omitted. This factor leads to the apparition of the fa¢tér+ 1)” in the denominator op (n)

(see, Eqg. (9)) and, as a consequence, it will assure that, at the harmonic limit (72), all formulae and equations in
our Letter for the Morse oscillator guide us to the corresponding one for the harmonic oscillator.

The obtained states/, y) (8) fulfill all requirements for the Gazeau—Klauder coherent states [2], i.e
normalization, continuity in the labelsandy , resolution of unity, temporal stability and action identéxcepting
the condition of the positivity of the weight function k(J) in the integration measutiuy (J, y) (32). In spite of this
disadvantage, in our opinion, these states are in fact “Gazeau—Klguateicoherent states” (GK-qCSs), instead
of the “pure” or “classical” Gazeau—Klauder coherent states.

Moreover, despite this drawback, the stdtks/) possess a series of interesting properties, some of them which
have been evinced in the present Letter, especially those connected with the mixed (thermal) states. The main
reason in favor of theJ, y) states for the Morse potential is the existence of the harmonic limit [14], so that
limpo|J, y) = |z). Due to this limit we recover all the results concerning the usual (Glauber) coherent states for
the one-dimensional harmonic oscillator.

Also, in the Letter we have constructed the GK-qCSs representation of the density operator for the one-
dimensional Morse oscillators quantum canonical gas, as well as their diagonal representation. By applying to an
original ansatz to write the Morse energy exponentialex¥, ), we have deduced the correspondidunction.

This allows us to calculate the thermal expectation values (thermal averages) for some specific operators (the
powers of the number-particle operatdr with s = 1 and 2), as well as the thermal analogue of the second-order
correlation function and the Mandel parameter.

If we pass from thegJ, y)-representation (37) to the-representation (where = K expg—a(r — r.)] is the
dimensionless Morse variable), we recover the following expression for the normalized Morse density operator [15]

& (N —20) CBEs ~L(+y) o N E(N=20)  N=2n/ 7 N—2n, .
(ylonly") __ZF(N+1—n)e nem 20T (yy) 2 NI LI () LT (). (84)

In order to calculate the thermal averages, by comparing these two representations of the density operator, we
observe that thg/, y)-representation (37) is much simpler than the correspondirggpresentation (84). This may
be an additional argument in favor of the GK-qCSs.

Besides the correction in the moments formala) (9) (in comparison with Eq. (9) from Ref. [3]), by adding
the factor(N + 1)~" and the consequences of this correction, we consider that the main results of this Letter are:
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(a) the ansatz for writing the energy exponential; (b) the expressi@afafiction; (c) the expression of the density
matrix in the GK-qCSs representation (41). In our opinion the above obtained results seem to be entirely new,
because, to our knowledge, these have not yet been published in specific literature.

The Morse oscillator is one of the most realistic models for describing the vibrations of a diatomic molecule,
being interesting not only from the experimental, but also from the theoretical point of view. Besides the
construction of other kinds of coherent states for the Morse potential [16—19], we consider that the present Letter
can also contribute to the quantum characterization of the Morse potential systems.
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