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Abstract

In the Letter, we have constructed and investigated some properties of the Gazeau–Klauder quasi-coherent sta
Morse potential, previously deduced by Roy and Roy. We have focused our attention on the thermal states and we h
the analytical form for the diagonalP -representation of the density operator.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The Morse potential is one of the most simple and “realistic” three-parameter anharmonic potential
which has proven to be very useful for solving various problems from diverse fields of physics
spectroscopy, diatomic and polyatomic molecule vibration and scattering). The one-dimensional non-ro
Morse Hamiltonian has the form [1]:

(1)HM(r) = − h̄2

2mr

d2

dr2
+D

[
1− e−α(r−re)

]2
wherer represents the internuclear distance,re is the equilibrium internuclear separation of the system of
nuclei in the diatomic molecule,mr is the reduced mass,α is the Morse constant of anharmonicity, andD is the
dissociation energy of the diatomic molecule (i.e., the depth of the potential energy well).

Based on the recent work of Gazeau and Klauder [2], who have determined a set of criteria which
coherent state|J,γ 〉 (later called “Gazeau–Klauder coherent state”) should satisfy, last year, Roy and Roy [3
constructed and examined the coherent states for the Morse potential, using the formalism of Gazeau and

In the present Letter we shall verify explicitly the conditions from the paper [2] for the case of Morse po
and examine other interesting properties of these states.

E-mail address: dpopov@etv.utt.ro (D. Popov).
0375-9601/$ – see front matter 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2003.07.008

http://www.elsevier.com/locate/pla


370 D. Popov / Physics Letters A 316 (2003) 369–381

ave made

th

hild’s

e of Roy

tinuous
asure;

,

2. The basic properties—revisited

In order to associate the usual coherent states with the Hamiltonian problems, Gazeau and Klauder h
some important modifications in the definition of coherent states [2,4]: the parametrization of the state|z〉 in terms
of a single complex numberz is extended by replacingz by two independent real numbersJ andγ , so thatJ � 0
and−∞< γ <∞, namelyz = √

J exp(−iγ ). In this way, the new obtained state is|J,γ 〉.
Let us review the concrete construction of the states|J,γ 〉 for the Morse oscillator potential, following the pa

of Roy and Roy [3] and correcting anomission in their paper.
The eigenequation and the eigenvaluesEn for the Morse HamiltonianHM are

(2)HM |[N], n〉 =En|[N], n〉,

(3)

En = 4
D

K

(
n+ 1

2

)
− 4

D

K2

(
n+ 1

2

)2

= h̄ω

(
n+ 1

2

)
− h̄ω

K

(
n+ 1

2

)2

=E0 + h̄ω

(
1− 1

K

)
n− h̄ω

K
n2,

where we have used the following notations and also the angular frequencyω for the Morse oscillator

(4)K = 2

√
2mrD

αh̄
, E0 = h̄ω

2

(
1− 1

2K

)
, ω = α

√
2D

mr

.

The eigenequation (2) can be rewritten in the following dimensionless manner:

(5)H |[N], n〉 = en|[N], n〉,
wheren= 0,1, . . . , [N/2] ([x] represent the integer part of the real numberx) and

(6)H = HM −E0

h̄ω
, en = 1

K
n(K − 1− n)= 1

N + 1
n(N − n).

To make the writing simpler, as in the last equality, in the remaining part of the Letter, instead of the C
parameterK [5], we also prefer to use the dimensionless parameterN

(7)N =K − 1,

and thus, the maximal number of the bound states for the Morse oscillator isnmax= [N/2].
With these considerations (we make the specification that some of our notations are different from thos

and Roy [3]), the states|J,γ 〉 become:

(8)|J,γ 〉 =N (J )

[N/2]∑
n=0

J
n
2 e−iγ en
√
ρ(n)

|[N], n〉.

The quantityρ(n) is defined as a unique function ofen’s, namely,

(9)ρ(n)=
n∏

k=1

ek = �(N)
�(n+ 1)

(N + 1)n�(N − n)
, ρ(0)= 1.

According to [2,3] the Gazeau–Klauder coherent state (GK-CS) (8) must be: (a) normalizable; (b) con
in two labelsJ andγ and must satisfy: (c) the resolution of unity, with a necessarily positive associated me
(d) the temporal stability condition and (e) the action identity.

Then, the matrix elements of an operatorA which characterize the Morse oscillator, in a|J,γ 〉-representation
are

(10)〈J ′, γ ′|A|J,γ 〉 =N (J ′)N (J )

[N/2]∑
v,n=0

J ′ v2J n
2√

ρ(v)ρ(n)
ei(γ ′ev−γ en)〈[N], v|A|[N], n〉.
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By particularizing the operatorA and the labelsJ andγ , we get to a series of interesting properties. So, ifA = I

(unity operator), due to the orthonormality of the eigenvectors|[N], n〉, we obtain the overlap

(11)〈J ′, γ ′|J,γ 〉 =N (J ′)N (J )

[N/2]∑
n=0

(J ′J ) n2
ρ(n)

ei(γ ′−γ )en,

which becomes simpler ifγ ′ = γ .
If A = I , γ ′ = γ andJ ′ = J , we obtain the normalization to unity

(12)〈J,γ |J,γ 〉 = [N (J )]2
[N/2]∑
n=0

J n

ρ(n)
= 1,

from which thenormalization constant is

(13)[N (J )]−2 =
[N/2]∑
n=0

J n

ρ(n)
≡F(J ), N (J )= 1√

F(J )
.

We note that the series (13) determining the normalization constantN (J ) is a finite series and thus it exists for a
values ofJ [6]. Consequently, the states|J,γ 〉 for the Morse potential (8) are normalizable and the normaliza
constant (13) is a continuous function in labelJ .

Thecontinuity in two labelsJ andγ follows from the continuity of the overlap〈J ′, γ ′|J,γ 〉 because

(14)
∥∥|J,γ 〉 − |J ′, γ ′〉∥∥2 = 2

(
1− Re〈J ′, γ ′|J,γ 〉)→ 0,

when(J ′, γ ′)→ (J, γ ).
If the operatorA is diagonal in the|[N], n〉-basis, i.e.,

(15)〈[N], n|A|[N], n〉 = anδvn

it follows that the diagonal elements in the|J,γ 〉-representation are

(16)〈J,γ |A|J,γ 〉 ≡ 〈A〉J = 1

F(J )

[N/2]∑
n=0

J n

ρ(n)
an.

As an example, ifA = v̂s , wherev̂ is the number operator̂v|[N], n〉 = n|[N], n〉 ands = 1,2, . . . it results

(17)
〈
v̂s
〉
J

= 1

F(J )

[N/2]∑
n=0

J n

ρ(n)
ns = 1

F(J )

(
J

d

dJ

)s

F(J ).

The expectations of the two first powers ofv̂ are

(18)〈v̂〉J = J
d

dJ
lnF(J ),

(19)
〈
v̂2〉

J
= J

d

dJ
lnF(J )+

(
J

d

dJ
lnF(J )

)2

+ J 2
(

d

dJ

)2

lnF(J ).

These expectations are useful in order to calculate the variance of the number operator

(20)(σv̂)J ≡ 〈
v̂2〉

J
− (〈v̂〉J

)2 =
(
J

d

dJ
lnF(J )

)2

+ J 2
(

d

dJ

)2

lnF(J ),
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as well as the second-order correlation function [7,8] for the Morse oscillator

(21)
(
g2)

J
= 〈v̂2〉J − 〈v̂〉J

(〈v̂〉J )2 = 1+ ( d
dJ

)2 lnF(J )

( d
dJ

lnF(J ))2
.

Moreover, the MandelQ-parameter [9,10] is

(22)QJ = (σv̂)J

〈v̂〉J − 1 = 〈v̂〉J
[(
g2)

J
− 1

]= J
( d
dJ

)2 lnF(J )

d
dJ

lnF(J )
.

The last two quantities provide information about the inherent statistical properties of the states|J,γ 〉. These
properties depend on the analytical expressions of the functions (21) and (22) as depending on the vaJ .
Because of the structure of these functions,(g2)J andQJ are difficult to be evaluated analytically, so they must
calculated numerically. Generally speaking, the states|J,γ 〉 exhibit sub-Poissonian statistics for those values oJ

for whichQJ < 0, Poisson statistics for values for whichQJ = 0 and supra-Poissonian statistics for values oJ

for whichQJ > 0.
The resolution of the unity in terms of a certain set of states is a very important property because it a

the practical use of these states as a basis in the Hilbert space [7]. LetH[N/2] be a finite-dimensional subspa
of the Hilbert spaceH, which is spanned by the complete orthonormal set of[N/2] + 1 states|[N], n〉 (n =
0,1,2, . . . , [N/2]). Then,Î[N/2] is the projection operator on the subspaceH[N/2] [11] and the resolution of th
unity in terms of the states|J,γ 〉 can be performed in the following manner:

(23)
∫

dµN(J, γ ) |J,γ 〉〈J,γ | = Î[N/2] =
[N/2]∑
n=0

|[N], n〉〈[N], n|.

The states|J,γ 〉 exist only if the radius of convergenceR is non-zero [4], and this fact is easy to demonstr
for the case of Morse oscillator:

(24)R = lim
n→∞[ρ(n)] 1

n → ∞,

by using the Stirling’s formula for�(n+ 1) and the following limit [13]:

(25)lim
N→∞

�(N + k)

�(N)Nk
= 1,

valid for anyk andN .
If we assume the integration measuredµN(J, γ ) so that [4]

(26)
∫
(. . .) dµN(J, γ ) = 1

π

π∫
−π

dγ

∞∫
0

(. . .)k(J ) dJ

we obtain

(27)
∫

dµN(J, γ ) |J,γ 〉〈J,γ | =
[N/2]∑
n=0

|[N], n〉〈[N], n|
ρ(n)

∞∫
0

J n[N (J )]2k(J ) dJ = 1.

After the function change

(28)k(J )= 1

[N (J )]2h(J ),
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the above integral leads to the following Stieltjes moment problem:

(29)

∞∫
0

J nh(J ) dJ = ρ(n) = �(N)
�(n+ 1)

(N + 1)n�(N − n)
,

i.e., the positive constantsρ(n) arise as moments of a probability distributionh(J ).
Following the standard method [4] and using the definition of Meijer’sG-function and the Mellin inversion

theorem, from which it follows that [12,13]

(30)

∞∫
0

dx xs−1Gm,n
p,q

(
αx

∣∣∣∣ a1, . . . , an, an+1, . . . , ap

b1, . . . , bm, bm+1, . . . , bq

)
= 1

αs

∏m
j=1�(bj + s)

∏n
j=1�(1− aj − s)∏q

j=m+1�(1− bj − s)
∏p

j=n+1�(aj + s)
,

we can express the functionh(J ) in terms of the Meijer’sG-function

(31)h(J )= (N + 1)�(N)G10
02

(
(N + 1)J

∣∣0,−N
)= (N + 1)−

N
2 +1�(N)J−N

2 JN
(
2
√
(N + 1)J

)
,

whereJN(. . .) is the Bessel function of the first kind.
In essence, this result is the same as that obtained by Roy and Roy for the probability distribution (see,

of Ref. [3]), taking into account that our notations are rather different:M + 1 =N , so thatnmax=M + 1 = [N/2].
On the other hand, the factorN + 1 (which is very important in calculations concerning the harmonic limit, as
will see in the last section) isomitted in the Ref. [3].

Finally, the correct integration measure becomes

(32)dµN(J, γ ) = (N + 1)−
N
2 +1�(N) dγ dJ F(J )J−N

2 JN
(
2
√
(N + 1)J

)
.

In order to verify thetemporal stability condition of the states|J,γ 〉, we apply the operator exp(−iωtH) and,
using the eigenvalue equation (5), we immediately obtain

(33)exp(−iωtH)|J,γ 〉 =N (J )

[N/2]∑
n=0

J
n
2 e−i(γ+ωt)en

√
ρ(n)

|[N], n〉 = |J,γ +ωt〉.

The temporal stability means that, under the chosen dynamics, the temporal evolution of the state|J,γ 〉 proceeds
to |J,γ +ωt〉, for an arbitrary fixed positive parameterω.

Theaction identity, written for the dimensionless HamiltonianH can be obtained from the Eq. (16), i.e.,

(34)〈J,γ |H |J,γ 〉 = 1

F(J )

[N/2]∑
n=0

J n

ρ(n)
en = N

N + 1
〈v̂〉J − 1

N + 1

〈
v̂2〉

J

and, after the straightforward calculations, becomes

(35)〈J,γ |H |J,γ 〉 = N − 1

N + 1
J

d

dJ
lnF(J )− 1

N + 1

[(
J

d

dJ
lnF(J )

)2

+ J 2
(

d

dJ

)2

lnF(J )

]
≡ f (J ).

We see that this is a certain function of the labelJ and this fact characterizes all the coherent states correspo
to systems with a finite-dimensional energy spectrum, as it was mentioned earlier [3].

Therefore, the states|J,γ 〉, constructed for the Morse potential, satisfy all criteria (a)–(e) for the cohe
states, as it was underlined in [3]. However, a problem comes out in connection to the weight functionk(J ) in the
integration measuredµN(J, γ ) (26).

According to the general requirements for the coherent states [2,4], the weight functionk(J ) must be a positive
function. Thanks to the Bessel functionJN(2

√
(N + 1)J ), the results expressed in (32) have both positive
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negative components. This kind of measure does not lead to coherent states which require a positive (o
non-negative) measure for the projection operators. For this reason we consider that the above construc
|J,γ 〉 are not “pure” or “classical” Gazeau–Klauder coherent states, as it was pointed out in [3] and, may
better to call these states theGazeau–Klauder quasi-coherent states for the Morse potential. Consequently, in the
remaining part of this Letter we will call the states|J,γ 〉 (8) the Gazeau–Klauder quasi-coherent states (GK-qC

Although these quasi-coherent states do not have a positive weight function, they have a series of in
properties (some of them were presented in Ref. [3]) which, as we will see, all lead to the corresponding pr
of the harmonic oscillator at the harmonic limit.

In the next section, we shall examine other interesting properties of the Gazeau–Klauder quasi-cohere
for the Morse potential, especially those connected with the mixed quantum states, i.e., the thermal states

3. Thermal states for the Morse potential

Now, we will carry out a detailed discussion on the statistical properties of the previously deduced
coherent states for the Morse oscillator|J,γ 〉. We consider a quantum system which consists of a gas of
dimensional non-rotational Morse oscillators in thermodynamic equilibrium with the thermostat at temp
T = (kBβ)

−1 (wherekB is Boltzmann’s constant andβ the corresponding temperature constant), which obey
quantum canonical distribution. The corresponding normalized density operator is then

(36)ρN = 1

ZN

[N/2]∑
n=0

e−βEn |[N], n〉〈[N], n|,

whereZN is the normalization constant, i.e., the partition function for a fixed parameterN , which characterize
the maximum number of bound vibrational states for a certain diatomic molecule.

Their matrix elements in the{|J,γ 〉}-representation are

(37)〈J ′, γ ′|ρN |J,γ 〉 = 1

ZN

1√
F(J ′)F(J )

[N/2]∑
n=0

e−βEn
1

ρ(n)
(J ′J )

n
2 e−i(γ−γ ′)en .

Using the integral [13]

(38)

∞∫
0

xµJν(ax) dx = 1

a

(
2

a

)µ �(1
2 + ν

2 + µ
2 )

�(1
2 + ν

2 − µ
2 )

, −Reν − 1< Reµ<
1

2
,

from the normalization condition

(39)TrρN =
∫

dµN(J, γ ) 〈J,γ |ρN |J,γ 〉 = 1,

we recover the correct expression of the vibrational partition function

(40)ZN =
[N/2]∑
n=0

e−βEn .

This suggests that the resolution of unity (23) with the integration measure (32), as well as the expressi
density matrix elements (37) are correct.

Because the GK-qCSs|J,γ 〉 form an overcomplete set of states, they may be used as a basis set despite
that they are non-orthogonal.
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In order to find the quasi-probability distribution functionPN(z) from the diagonal expansion of the dens
operatorρN in the GK-qCSs,

(41)ρN = 1

ZN

∫
dµN(J, γ ) |J,γ 〉PN(J )〈J,γ |,

we observe that the equation

(42)〈f |ρN |g〉 = 1

ZN

∫
dµN(J, γ ) 〈f |J,γ 〉PN(J )〈J,γ |g〉

must be fulfilled for any arbitrary vectors〈f | and |g〉 from the Hilbert space (or, for any vectors from the ba
|J,γ 〉 or |[N], n〉). What is more, from the trace-condition (39) and the scalar product or overlap (11), it fo
that theP -function satisfies the normalization condition

(43)
∫

dµN(J, γ )PN(J )= 1.

The left-hand side of Eq. (42) is

(44)LHS= 1

ZN

[N/2]∑
n=0

e−βEn〈f |[N], n〉〈[N], n|g〉,

while, after the angular integration

(45)
1

2π

π∫
−π

dγ e−i(en−ev)γ = δnv,

the right-hand side becomes

(46)RHS= (N + 1)−
N
2 +1�(N)

[N/2]∑
n=0

〈f |[N], n〉〈[N], n|g〉
ρ(n)

∞∫
0

J n−N
2 JN

(
2
√
(N + 1)J

)
PN(J ) dJ.

Comparing LHS and RHS we obtain that the integral must be

(47)

∞∫
0

J n−N
2 JN

(
2
√
(N + 1)J

)
PN(J ) dJ = 1

ZN

e−βEn
�(n+ 1)

(N + 1)n−N
2 +1�(N − n)

,

wherePN(J ) is an unknown function. In order to determine it, we adopt the following strategy.
The energy eigenvalues of the Morse oscillator (see, Eq. (3)) depend on the square of the vibrational

numbern and, as a result, the energy exponential exp(−βEn) is not suitable to be written as a product of a cons
quantity and a naturaln-power of an exponential (as well as in the case of the harmonic oscillator) and to b
in solving the integral (47) in the standard manner, i.e., as the Stieltjes moment problem [12,13]. So, to av
inconvenience, it is necessary to elaborate a special method as indicated below.

First of all, we can write the energy exponential as follows:

(48)βEn ≡ βE0 +An−Bn2,

where the used notations are:

(49)A≡ βh̄ω

(
1− 1

K

)
= h̄ω

(
1− 1

N + 1

)
, B ≡ β

h̄ω

K
= β

h̄ω

N + 1
.
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For most of the diatomic moleculesB � A. So, the limits of the parameterK = N + 1 (see, Eq. (7)) are
very large, e.g.,K = 37.1586 for H2 molecule, i.e., for a “light” molecule andK = 348.78 for I2, a “heavy”
molecule [14]. As a consequence, the quantityB can be regarded as a perturbation constant and the e
exponential can be expanded in the power series as follows:

(50)e−βEn = e−βE0e−AneBn2 = e−βE0e−An

∞∑
k=0

Bk

k! n
2k.

By writing

(51)e−Ann2k =
(

d

dA

)2k

e−An

we finally have

(52)e−βEn = e−βE0

∞∑
k=0

Bk

k!
(

d

dA

)2k[
e−A]n.

It is obvious that theP -function also depends on the quantitiesA andB, besides the variableJ . This leads to
the idea thatPN(J )≡ PN(J,A,B) can also be expanded in a power series similarly to the energy exponenti
in the following manner:

PN(J )= 1

ZN

e−βE0

∞∑
k=0

Bk

k!
[(

d

dA

)k

PN (J,A,B)
]
B=0

(53)≡ 1

ZN
e−βE0(N + 1)

N
2 −1

∞∑
k=0

Bk

k!
(

d

dA

)2k

XN(J,A),

where the functionXN(J,A) is to be determined.
By inserting Eqs. (52) and (53) into Eq. (47), we obtain:

(54)

∞∫
0

J n−N
2 JN

(
2
√
(N + 1)J

)
XN(J,A) dJ = 1

[eA(N + 1)]n
�(n+ 1)

�(N − n)
.

With the help of a new function

(55)XN(J,A) = 1

JN(2
√
(N + 1)J )

hN(J,A)

and extending the natural values ofn to complexs such thatn − N
2 = s − 1, we get to the following Stieltje

moment problem:

(56)

∞∫
0

J s−1hN(J,A) dJ = 1

[eA(N + 1)]N2 −1

1

[eA(N + 1)]s
�(N2 + s)

�(N2 + 1− s)
.

The solution of such a problem is [12]

(57)

hN(J,A) = 1

[eA(N + 1)]N2 −1
G10

02

(
eA(N + 1)J

∣∣N
2 ,−N

2

)= 1

[eA(N + 1)]N2 −1
JN
(
2
√
eA(N + 1)J

)
.
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Finally, theP -function is

(58)PN(J )= 1

ZN

e−βE0

∞∑
k=0

Bk

k!
(

d

dA

)2k[(
eA
)1−N

2
JN(2

√
eA(N + 1)J )

JN(2
√
(N + 1)J )

]
.

We can also use the following operator identity:

(59)
∞∑
k=0

Bk

k!
(

d

dA

)2k

≡ exp

[
B
(

d

dA

)2]

and so, theP -function becomes

(60)PN(J )= 1

ZN

e−βE0 exp

[
B
(

d

dA

)2][(
eA
)1−N

2
JN(2

√
eA(N + 1)J )

JN(2
√
(N + 1)J )

]
.

In order to verify the correctness of the above obtained expression, we shall mention an important pro
theP -distribution function, i.e.,

(61)
∫

dµN(J, γ )PN(J )= 1.

By using the integral (38) and Eq. (52), after the straightforward calculations, the property (61) can be
verified.

As it is shown in [8,9], theP -function is analogous to a probability distribution for the values ofJ . However,
it is a quasi-probability distribution function becausePN(J ) can take negative values or become highly singu
especially when the density operator corresponds to a classical state with sub-Poissonian statistics. In
to this, the diagonal representation of the density operator (or theP -representation) is convenient for evaluati
expectations of the different operators concerning the Morse oscillator system.

The thermal expectation value for the observableA is

(62)〈A〉N = Tr(ρNA)=
∫

dµN(J, γ )PN(J )〈J,γ |A|J,γ 〉 ≡ 〈A〉J,γ .
If the operatorA is diagonal in the|J,γ 〉-basis, e.g., if it is an integer powers of the number operator̂v, then,

using Eqs. (17), (38) and (47), we obtain successively:

(63)
〈
v̂s
〉
N

= (N + 1)1−N
2 �(N)

[N/2]∑
n=0

1

ρ(n)
ns

∞∫
0

J n−N
2 JN

(
2
√
(N + 1)J

)
PN(J ) dJ = 1

ZN

[N/2]∑
n=0

e−βEnns .

In order to evaluate the last sum for different values ofs, we rewrite the energy exponential (see, Eq. (3)
follows:

(64)e−βEn = e−βh̄ω(n+ 1
2 )+β h̄ω

N+1 (n+ 1
2)

2 = e−a(n+ 1
2 )+B(n+ 1

2 )
2
,

wherea = βh̄ω and, consequently,

(65)
〈
v̂s
〉
N

= 1

ZN

[N/2]∑
n=0

nse−a(n+ 1
2 )+B(n+ 1

2 )
2
.

Because the quantityB is small, it can be considered as a perturbation constant to a harmonic behaviou
is advantageous to writens as a linear combination of the powers of(n+ 1

2)
l :

(66)ns =
(
n+ 1

2
− 1

2

)s

=
s∑(

s

l

)(
−1

2

)s−l(
n+ 1

2

)l

.

l=0
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Therefore, it is possible to express the thermal expectations〈v̂s〉N through the derivatives of the lnZN :

(67)
〈
v̂s
〉
N

= 1

ZN

s∑
l=0

(
s

l

)(
−1

2

)s−l

(−1)l
(

∂

∂a

)l

ZN .

In this manner the thermal expectations for the first two powers are

(68)〈v̂〉N = − ∂

∂a
lnZN − 1

2
,

(69)
〈
v̂2〉

N
=
(

∂

∂a
lnZN + 1

2

)2

+
(

∂

∂a

)2

lnZN.

With these expectations we can define and calculate the thermal second-order correlation functiong
(2)
N and the

thermal Mandel parameterQN , i.e., the thermal analogue of the corresponding functions for the GK-qCS|J,γ 〉
(see, Eqs. (21) and (22)):

(70)
(
g2)

N
= 〈v̂2〉N − 〈v̂〉N

(〈v̂〉N)2 = 1+ 1
∂
∂a

lnZN + 1
2

+ ( ∂
∂a
)2 lnZN

( ∂
∂a

lnZN + 1
2)

2
,

(71)QN = (σv̂)N

〈v̂〉N − 1 = 〈v̂〉N
[(
g2)

N
− 1

]= −1− ( ∂
∂a
)2 lnZN

∂
∂a

lnZN + 1
2

.

In a similar way, it is possible to express, as functions of the lnZN , all thermodynamical and statistic
characteristics of a quantum gas of non-rotational Morse oscillators which is in thermodynamical equi
with a thermostat (e.g., free energy, internal energy, entropy, heat capacity at the constant volume and so

4. The harmonic limit of the obtained results

In the last section let us examine the exact formulation of the harmonic limit of the Morse oscillator. W
proven that this requires the simultaneous (or correlated) prosecution of the following limiting operations [

(72)lim
HO

≡




D → ∞,

K → ∞,

α → 0,
4D
K

= h̄ω,

Dα2 = mω2

2 ,

Kα2 = 2mω
h̄
.

At the harmonic limit, all obtained formulae and equations for the one-dimensional Morse oscillator mu
to the corresponding one for the one-dimensional harmonic oscillator.

We begin with the dimensionless Morse eigenvalues (6)

(73)lim
N→∞ en = lim

N→∞
1

N + 1
n(N − n) = n,

so that the quantityρ(n) (9) has the limit

(74)lim
N→∞ρ(n)= lim

N→∞�(n+ 1)
�(N)

(N + 1)n�(N − n)
= n! ≡ ρHO(n).
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Here we have used Eq. (25) and, because of the fact thatN is a great number, we can putN ≈ N + 1. Similarly,

(75)lim
N→∞[N (J )]−2 = lim

N→∞F(J )=
[N/2]∑
n=0

J n

limN→∞ ρ(n)
=

∞∑
n=0

J n

n! = eJ .

With these limits we can easily show that, at the harmonic limit, the GK-qCS for the Morse potential (8)
to the GK-CS for the one-dimensional harmonic oscillator (HO), which is identical to the usual (Glauber) co
states (CS) if we considerz = √

J exp(−iγ ):

(76)lim
N→∞ |J,γ 〉 = e− J

2

∞∑
n=0

J
n
2 e−iγ en
√
n! |n〉 = |z〉,

where|[N], n〉 ≡ |n〉.
At the harmonic limit (72), the integration measure (32) becomes

(77)lim
N→∞ dµN(J, γ ) = dγ dJ lim

N→∞F lim
N→∞

[
(N + 1)−

N
2 +1�(N)(J )J−N

2
]

lim
N→∞JN

(
2
√
(N + 1)J

)
.

We calculate the last limit by using the Bessel function power series [13]

(78)JN
(
2
√
b(N + 1)J

)= [√
b(N + 1)J

]N ∞∑
k=0

(−1)k[√b(N + 1)J ]2k
k!�(N + 1+ k)

,

so that, due to�(N + 1)=N�(N), we have

lim
N→∞JN

(
2
√
b(N + 1)J

)= lim
N→∞

[√
b(N + 1)J

]N lim
N→∞

1

N
lim

N→∞

∞∑
k=0

(−bJ )k

k!
1

�(N+1+k)

(N+1)k�(N+1)

(79)= e−bJ lim
N→∞

1

N

[√
b(N + 1)J

]N
.

Taking b = 1, the product of the two last limits from Eq. (77) is exp(−J ), and so, using Eq. (75), we final
obtain

(80)lim
N→∞ dµN(J, γ ) = dγ dJ = 2dγ |z|d|z| = d2z,

i.e., the integration measure for the CS-HO.
The limit of the action identity (35) is

(81)lim
N→∞〈J,γ |H |J,γ 〉 = lim

N→∞
N − 1

N + 1
J

d

dJ
lnF = J = |z|2,

i.e., the same as for the HO.
In our opinion, one of the main results of our Letter is the expression of theP -distribution function (58).

Therefore, it is compulsory to examine their harmonic limit:

(82)lim
N→∞PN(J )= lim

N→∞
1

ZN

e−βE0 lim
N→∞ exp

[
B
(

d

dA

)2]
lim

N→∞

[(
eA
)1−N

2
JN(2

√
eA(N + 1)J )

JN(2
√
(N + 1)J )

]
.

The first limit from the right-hand side, taking into account the limit of the quantityA (49), leads to the
expression 1− exp(−βh̄ω), the second limit is equal to unity, while for the third we use Eq. (79) and we o
exp(βh̄ω)exp[−J (eβh̄ω − 1)]. All in all, the result is theP -distribution function for the harmonic oscillator:

(83)lim
N→∞PN(J )= (

eβh̄ω − 1
)
e−|z|2(eβh̄ω−1) = P(|z|).
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If N → ∞, thenA → βh̄ω andB → 0 and this fact provides that theEn (Morse oscillator)→ En (harmonic
oscillator) andZN (Morse oscillator)→ Z (harmonic oscillator). As a result, all the thermal expectations (67
the Morse oscillator lead to the corresponding thermal expectations for the harmonic oscillator.

The same situation is, of course, available for all thermodynamical and statistical characteristics of a q
canonical gas of non-rotational Morse oscillators. The fact that, at the harmonic limit, all these expectation
lead to the corresponding results for the one-dimensional harmonic oscillator, suggests that our obtained
Klauder quasi-coherent states for the Morse potential are correct, as well as our obtained formulae for the
representation of the density operator (41), respectively, for theP -function (58).

5. Concluding remarks

The |J,γ 〉 states for the Morse potential were constructed by Roy and Roy [3], using the standard m
proposed in the original paper of Gazeau and Klauder [2]. In Ref. [3] some properties of these states w
examined, by underlining the conditions which these states must satisfy.

In the present Letter we have examined some properties of the|J,γ 〉 states for the Morse potential, followin
the basic ideas from the two papers above [2,3].

Despite the fact that the calculations are correct in essence, in Ref. [3], the factorK−1 = (N + 1)−1 in the
expression ofen is omitted. This factor leads to the apparition of the factor(N + 1)n in the denominator ofρ(n)
(see, Eq. (9)) and, as a consequence, it will assure that, at the harmonic limit (72), all formulae and equ
our Letter for the Morse oscillator guide us to the corresponding one for the harmonic oscillator.

The obtained states|J,γ 〉 (8) fulfill all requirements for the Gazeau–Klauder coherent states [2],
normalization, continuity in the labelsJ andγ , resolution of unity, temporal stability and action identity,excepting
the condition of the positivity of the weight function k(J ) in the integration measuredµN(J, γ ) (32). In spite of this
disadvantage, in our opinion, these states are in fact “Gazeau–Klauderquasi-coherent states” (GK-qCSs), inste
of the “pure” or “classical” Gazeau–Klauder coherent states.

Moreover, despite this drawback, the states|J,γ 〉 possess a series of interesting properties, some of them w
have been evinced in the present Letter, especially those connected with the mixed (thermal) states. T
reason in favor of the|J,γ 〉 states for the Morse potential is the existence of the harmonic limit [14], so
limHO |J,γ 〉 = |z〉. Due to this limit we recover all the results concerning the usual (Glauber) coherent sta
the one-dimensional harmonic oscillator.

Also, in the Letter we have constructed the GK-qCSs representation of the density operator for th
dimensional Morse oscillators quantum canonical gas, as well as their diagonal representation. By apply
original ansatz to write the Morse energy exponential exp(−βEn), we have deduced the correspondingP -function.
This allows us to calculate the thermal expectation values (thermal averages) for some specific opera
powers of the number-particle operatorv̂s , with s = 1 and 2), as well as the thermal analogue of the second-o
correlation function and the Mandel parameter.

If we pass from the|J,γ 〉-representation (37) to they-representation (wherey = K exp[−α(r − re)] is the
dimensionless Morse variable), we recover the following expression for the normalized Morse density opera

(84)〈y|ρN |y ′〉 = 1

ZN

[N/2]∑
n=0

α(N − 2n)

�(N + 1− n)
e−βEne− 1

2(y+y ′)(yy ′)
1
2 (N−2n)LN−2n

n (y)LN−2n
n (y ′).

In order to calculate the thermal averages, by comparing these two representations of the density ope
observe that the|J,γ 〉-representation (37) is much simpler than the correspondingy-representation (84). This ma
be an additional argument in favor of the GK-qCSs.

Besides the correction in the moments formulaρ(n) (9) (in comparison with Eq. (9) from Ref. [3]), by addin
the factor(N + 1)−n and the consequences of this correction, we consider that the main results of this Let
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(a) the ansatz for writing the energy exponential; (b) the expression ofP -function; (c) the expression of the dens
matrix in the GK-qCSs representation (41). In our opinion the above obtained results seem to be entir
because, to our knowledge, these have not yet been published in specific literature.

The Morse oscillator is one of the most realistic models for describing the vibrations of a diatomic mo
being interesting not only from the experimental, but also from the theoretical point of view. Besid
construction of other kinds of coherent states for the Morse potential [16–19], we consider that the prese
can also contribute to the quantum characterization of the Morse potential systems.
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